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Abstract: A logical model of multi-tiered persistent storage provides a view of data where all available storage resources
are distributed over a number of levels depending on the data transfer parameters and capacities. The efficient parallelization
of data transfers in multi-tiered persistent storage is a significant challenge for a pipelined data processing model. This work
examines a category of database applications implemented as sequences of operations that transfer data between the levels of
multi-tiered persistent storage. The concept of EPN: Extended Petri Nets represents how database applications can be processed
in parallel. A proposed transformation involves converting EPN into sequences of parallel data transfers. Additionally, a method
is demonstrated for partitioning these sequences of data transfers, with the goal of reducing the total number of conflicts when
data transfers occur between the levels of multi-tiered persistent storage. The paper proposes new rule-based algorithms for
scheduling parallel data transfers that minimize total data transfer time. The objectives of the new algorithms are to evenly
distribute the workload among the data transfer processes and reduce their idle time. Several experiments have confirmed the
effectiveness of the new algorithms in generating parallel data transfer plans.

Keywords: Multi-tiered Persistent Storage, Scheduling, Parallel Data Processing, Performance Tuning,
Database Management Systems

1. Introduction

The progress in new data analysis techniques means that
commercial organizations need reliable, high-capacity storage
devices for the large volumes of data they generate. Different
types of storage devices are available, both on-site and in the
cloud, which together form the multi-tiered view of persistent
storage [2, 3]. In this setup, data is spread across different
storage levels, each with different capacities and performance.
Typically, higher storage levels are more expensive but offer
better performance. Data processing involves moving data
between these levels, with applications competing for access to
the best-performing levels. Optimizing parallel data transfers
in multi-tiered storage is crucial for overall performance.

This study focuses on scheduling parallel data transfers
between different storage levels. It looks at a model where
data flows between operations in a graph. These operations
read and process data, passing the results to other operations.

The assumption is that data can be read from and written to
different storage levels at the same time, enabling parallel
transfers. However, due to the physical properties of multi-
tiered storage, simultaneous access to the same level is not
possible, leading to conflicts and delays when processing
multiple applications at once. Therefore, careful scheduling
of data transfers between storage levels is necessary.

The scheduling algorithm introduced in this study aims
to minimize the total processing time for a given set of
applications. It works to evenly balance the workloads of
individual data transfer processors and reduce their idle times.
The key research contributions of this paper are as follows:

1. It assumes that database applications are implemented
as sequences of operations on data. It demonstrates how
to convert these sequences of operations into sets of data
transfers between the levels of multi-tiered storage.

2. The study shows how to partition sets of data transfers
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to reduce the total number of conflicts between them.

3. New rule-based algorithms are proposed for scheduling
data transfers. The goal is to minimize total processing
time, evenly distribute the workload among data transfer
processors, and reduce processor idle time.

4. The pipelined data processing model can be efficiently
implemented in a multi-tiered persistent storage model.

The paper is organized as follows:

1. Section 2 provides an overview of previous research on
scheduling data transfers.

2. Section 3 presents a model of multi-tiered persistent
storage and explains the concepts utilized in this work.

3. Section 4 describes the generation of a processing plan
using information from an Extended Petri Net (EPN).

4. The scheduling algorithms and resource allocation for

parallel data processing are discussed in Section 5.

Section 6 includes the results of the experiments.

6. Finally, Section 7 concludes the paper.

e

2. Previous Works

A scheduling algorithm is crucial for optimizing task
and job processing on multicomputer systems. Rule-
based scheduling methods have been applied to parallel
manufacturing machines and parallel computing systems
[4, 5].  Priority scheduling rules algorithms, such as
FCFS:First Come First Serve, SPT:Shortest Processing
Time, LPT:Longest-processing-time-first, and random, were
proposed in a previous study [6].  This research also
investigated resource distribution across single and multiple
processor systems and presented solutions to the task
scheduling problem under the LogP model [7], featuring
theoretical and experimental results.

Many organizations are currently implementing extensive
relational databases to manage operational and historical
information.  Parallel processing of large data sets is a
standard approach to address performance challenges. A
significant body of research has been conducted on parallel
data processing, covering topics such as automatic partitioning
of databases [8], data clustering for parallel database systems
[9], and the utilization of multidimensional data allocation for
parallel database systems [10], among others.

The previous research [11] contributed to the development
of automated performance tuning plans incorporating
materializations and indices within a single layer of multi-
tiered persistent storage. In a separate work, a novel resource
allocation algorithm spanning multiple layers of multi-tiered
persistent storage was introduced in [12, 13]. Additionally,
the same publication presented a new approach for identifying
query processing plans for predicted workloads using a new
cost model presented in [12]. Furthermore, the development
of an Extended Petri-net-based model and the optimization of
query processing plans for multi-tiered persistent storage were
outlined in [13].

3. Basic Concepts

In multi-tiered persistent storage, a list of persistent storage
tiers is represented as a sequence of positive integer numbers
denoted by L = (ly,...,l,). The first number [y represents
the lowest and slowest tier while the last number [,, represents
the highest and fastest tier. Usually, I < 11 <...<lp_1 <.
Each tier I; € L is associated with a pair (r;, w;), where r; is
the total number of data blocks that can be read in a single time
unit (for example, a millisecond) from a tier /;, and w; is the
total number of data blocks that can be written to a single time
unit to a tier /;.

The processing of database queries involves transferring
data between storage tiers L. These data transfers are identified
by transforming an original query processing plan generated
by a database query optimiser into an F PN, as described in
the next section. The EPN is used to capture the possible
parallelisations in the query processing.

Then, the EPN is transformed into a sequence of operations
E = (e1, ..., e,). Input and output data for an operation
e; € E are represented by a pair of sets, {b1, ..., b}
and {by41, ..., by}, where the first set represents the input
datasets, while the second set represents the output datasets.
Each b; contains pairs of data blocks represented as {(D1, ),

-y (Dms lm)}, where D; (for ¢ = 1, ..., m) denotes the total
number of data blocks, and [; represents the location of the
data blocks at tier [;. For instance, ({(100, l;), (250, l2)},
{(200, I3)}) represents 350 blocks of input data located at the
levels [; and [5 and 200 blocks of output data located at level
l3.

The operations in E read the data blocks from persistent
storage into transient memory and write the data blocks from
transient memory into persistent storage. Every single read or
write operation engages a single tier in multi-tiered persistent
storage. It is how the processing of a sequence of operations F
contributes to a sequence of data transfers @ = ((l;, t;n), ...,
({;,tn)), where [; . . . [; represent the tiers in persistent storage,
and t,, ...t, represent the number of time units required to
transfer data to or from persistent storage. Each pair (I, t) in
the sequence is known as a data transfer.

In this work, simultaneous processing of multiple database
queries submitted by users is considered, which are then
transformed into a set of sequences of operations £ = {Fj,
..., B, } in the manner explained above.

The sequences of operations in £ contribute to a set of
sequences of data transfers @ = {Q1, ..., Q;}.

The dedicated processes perform the bidirectional data
transfers between the tiers of persistent storage and the
transient data buffers. A single data transfer assigned to a
process involves either reading data from transient memory
and writing data to persistent storage or reading data from
persistent storage and writing to the data buffer in transient
memory.

Assuming there are m processes available for implementing
data transfers in Q, denoted as P = {Pi,..., Py}, which
are simultaneously transferring data between different levels
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of multi-tiered persistent storage, an objective of data transfer
scheduling proposed in this work is to allocate the data
transfers in Q to the processes in P in a way that minimises the
total data transfer time. For each process, P; € P is associated
with a sequence of data transfers ((I;, t;), ..., ({n, tm)). The
abbreviations and definitions are listed in Table 1.

Table 1. List of abbreviation and definition used in this paper

Abbreviation Definition

l A tier in multi-tiered persistent storage

L A sequence of tiers

T Reading speed for a tier

w Writing speed for a tier

EPN Extended Petri Net

e An operation

E A sequence of operations

& A setof E

b A dataset

D Total number of data blocks

t The amounts of time units required to transfer data between
multi-tiered persistent storage

{bi,..., b;} Input or Output datasets

Q A sequence of transfers

Q A setof Q

P A process that transfers the data transfer to and from multi-
tiered persistent storage

P A set of processes P

4. Generation of Sequences of Operations

This section presents the notation of EPN. It shows how
to represent parallel query processing plans with an EPN
and how to generate a sequence of operations implementing
a query.

4.1. Extended Petri Nets

Consider a scenario where a relational database server
receives a SQL query from a database application.

The query optimiser generates a query processing plan,
which is represented as a directed bipartite graph that contains
a list of operations. This graph is then transformed into an
E PN to show the flow of data and the possible parallelisations
when processing the query. The notation of EPNs proposed
in this work is derived from a well-known notation of Petri
Nets [14], which is commonly used in both sequential and
concurrent systems to provide a clear understanding of parallel
data processing.

An EPN is a quadruple (B, V, A, W), where input/output
datasets (B) and operations (V') are visualised as circles and
rectangles, respectively. The datasets and operations are
connected by the arcs in A C (B x V)U (V x B) representing
the data flows in the processing of a query. An arc a; € A
is a pair (e, b) that connects an operation e to a dataset b or a
pair (b, e) that connects a dataset b to an operation e. The total
number of data blocks read and written by each operation is
determined by a weight function W : A — NT.

An operation can use multiple input and output datasets, and
such datasets can also be used by multiple operations. Figure
1 provides a sample visualisation of an EPN.

Figure 1. Visualisation of Extended Petri Nets

Example 4.1. An EPN (B, V', A, W) visualised in Figure 1
has the following components.

A set of datasets B = {bl, b, bs, by, bs, bg, by, bs, by, b1g,
bn, blg, b13, b14}. b1 = {(200, lo), (200, ll)},

ba = {(200, 1), (100, I2)},

bs = {(100, l1), (250, l2)},
by = {(100, 13), (180, 1)},
bs = {(200. L), (300, 1)},
be = {(200, L), (250, 1)},
bz ={(100, l4), (100, I5)},
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bs = {(100, 1), (150, Is)},

by = {(50, 11), (50, I2)},

bio = {(100, l4)},

b11 = {(80, 15)},

b2 = {(100, l4), (80, 5)},

b1z ={(60,11)},

b14a ={(90,15)},

A set of operations V' = {e1, ea, €3, ey, €5, e, €7, €5, €9,
€10, €11, €12}

A setof arcs A={a; : (b1, e1), az : (eq, b3),
as (bg, 62), aq (62, b4),

as : (bg, 63), Qg - (b4, 63), ar (63, bﬁ),

as - (b5, 64), ag (64, b7),

ao : (b, e5), a11 : (es, bg),

aig (bﬁ, 66), (66, bg)

a4 : (b7, er), (l15 (e7, b1o, a16 = (e7, b11),
ayy . (bs, 68), aig - (68, b )

aig : (bg ) aso - (6 9, b )

a21 : (blo, 610) a2 : (610, b12),

ags : (b11, €11), azs : (€11, b13),

ass : (b1, €12), age : (bis, e12), asr : (€12, bia)}

The weight function, denoted as W, assigns a numerical
value to each edge to represent the total number of data blocks
read or written by its corresponding operation. For instance,
the weight function assigns 400 data blocks to an edge a; :
(b1, e1). It means that operation e; reads 400 data blocks.

4.2. Transformation of Extended Petri Nets into Sequences
of Operations

To discover a sequence of data transfers that is required to
process a query, an EPN representing a query must first be
converted into a sequence of operations. This section presents
the algorithms that convert EPNs into sequences of operations.

The concepts of root dataset and root operation, split
dataset and split operation, and merge dataset and merge
operation are foundational in an EPN.

A root dataset is an input dataset that is not used as an output
dataset by any operation. A root operation is an operation
that is only connected to a root dataset. This means that an
operation that reads from both a root dataset and a non-root
dataset cannot be considered a root operation. A fop operation
refers to an operation that does not have any other operations
reading its output data container.

A dataset is a split dataset when it is an input dataset for
more than one operation. A dataset is a merge dataset when it
is an output dataset for more than one operation.

Similarly, an operation is a merge operation when it has
more than one input dataset, while an operation is a split
operation when it has more than one output dataset.

Section 4.2.1 provides an algorithm for creating a sequence
of sets of operations. Section 4.2.2 provides an algorithm
for the conversion of a sequence of sets of operations into a
sequence of operations.

4.2.1. Creating Sequences of Sets of Operations
Algorithm 4.1 transforms an EPN (B, V, A, W) into a
sequence of sets of operations S = ({e;, ..., e;}, , {ex,
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.., ey}). Each dataset in B is associated with the number
of minimum tokens required to process it. For example, let
the input dataset b; for operation e; be the output dataset for
operations e; and ey. In this scenario, a minimum number of
two tokens is required for b;. As soon as e; is written to dataset
b;, one token will be associated with it, and after e;, is written
to b;, another token will be associated with b;. Once b; has two
tokens associated with it, operation e; can read the data from
b;.

This work assumed that the ¥ PN may have one or more
root operations.

First, the algorithm associates tokens to all the root input
datasets. All the operations become ready to process once
tokens are assigned to their input datasets.

Then, the algorithm identifies all the operations that can
be processed and groups them into a set. Following that, it
removes operations that cannot be processed together from
the selected operations if they are merge operations or their
input/output dataset is a merge/split dataset. This implies that
operations that read from common datasets cannot be located
in the same set or that operations that write to a shared dataset
cannot be located in the same set. In that case, the algorithm
randomly selects one operation and eliminates another that
cannot process concurrently from the set. Afterwards, the
algorithm appends that set of operations to a sequence of sets.
The procedure repeats until the top operation is added to .S.
Finally, the algorithm returns the outcome S = ({{e;, ..., €;),

g oose) oo {(en, o em)s o (€ €20 )

Algorithm 4.1. Generate a sequence of sets of operations
Input: An Extended Petri Net (B, V, A, W)
Output: A sequence of sets S'= ({e;, ..., e;}, ...,

ey})-

(1) Create a new empty sequence of sets called S = ().

(2) Assign tokens to all root datasets and copy V' to Viepmp.

(3) Identify all the operations from Vi,,, where all their
input datasets have the minimum number of tokens. And
add these operations to a temporary set called Siepmp =
{61;, ey Bj}.

(4) Remove all the operations from Sy, that are already
inS.

(5) Partition the Siep,p using Algorithm 4.2.

(6) Create the empty set temp = {}.

(7) If Stemp is not empty, then iterate over Siemyp, and let
current set be {e;, ..., e;}.

{€x, .-,

(a) Iterate over the current set, and let the current
operation be e;.

(i) If e; is not in temp and is not in the same set
as one of the operations in temp, then append
e; to the temp and remove and exit from the
iteration.

(8) Else, goto Step (11).
(9) Appendtempto S=(...,{e;, ..., e;}) and remove all
the operations from Vi, which are included in temp.
(10) Next, associate all output datasets of each operation
from temp with a token and go back to Step (3).
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(11) Return the resulting set S = ({e;, ..
ey})
Algorithm 4.2. Generate a set of sets conflicted operations

Input: A set of operations Siepmp = {€;, ..., €j}.

Output: Partitioned Sic,p, a set of sets of operations Sierp

={{ei,....e;}, ..., {es, ..., ey} )

(1) Create a temporary set with the first operation from
Stemp like temp = {{e;}}, remove e; form Sicy,p and
set the boolean variable check to false, check = false.

(2) Iterate over Stemy , let the current operation be e;.

et {ew

(a) Iterate over temp, let the current set be {ej, e,
ek}.

(i) If e; is reading from the same input dataset
from one of the operations in the current set
or e; is writing to the same output datasets
from one of the operations in the current set,
then append e; to that set and set the boolean
variable check to true, check = true.

(b) If check = false, then create a new set with e; like
{e;} and append it to temp.

(3) After the iteration, set Siemp = temp.

(4) Return partitioned Siepmp = {{€i, ..., €}, ..., {€x, ...,

ey}

Example 4.2. In this example, the EPN given in Figure
1 is transformed into a sequence of sets of operations. The
root input datasets by, b and b5 are associated with tokens.
The next step is to identify all the operations that are ready to
process. In this case, the set of operations {ej, es, e4} can be
processed, since all their input datasets have associated tokens.
Additionally, the operations in this set do not read from the
same input datasets or write to the same output datasets, so
they can be appended to the sequence of sets S = ({e1, ea,
e4}). The output datasets of each operation in this set are then
associated with tokens.

Next, all operations ready for processing are identified.

In this step, a set of operations {es, e7} is ready to process.
These operations do not read from the split input dataset or
write to the merge output dataset. The output datasets of each
operation in the set are then associated with tokens.

This set is appended to S, and S is updated as S = ({e1, ea,
es}, {es, er}).

Next, all operations ready for processing are identified.

In this step, a set of operations {es, eg, €19, €11} can be
processed.

Given that operations e5 and eg access the same dataset bg,
one operation is selected, and the other is excluded from the
group. Consequently, the revised group becomes {es, e1q,
€11}, which is then added to S = ({ey, ea, e4}, {es, er}, {es,
€10, €11})-

Finally, the output datasets of each operation in this set are
associated with tokens.

The same procedure is repeated until all operations from V'
are appended to S. After completing the process, the algorithm
generates a sequence of sets .S, as shown below.

(

{61, €2, 64},

{es, e},

{65, €10, 611},
{66, 68},
{eo}.

{e1}

)

4.2.2. Creating Sequences of Operations

To process a single query, it is necessary to determine
a sequence of data transfers. This can be achieved by
transforming a sequence of sets of operations into a sequence
of operations. To accomplish this, the optimal order for
processing the operations within each set of operations must be
identified. This section explains how to convert the sequence
of sets of operations S obtained from Algorithm 4.1 into a
sequence of operations.

Initially the algorithm calculates the profit for each
operation in each set of operations in S. To calculate the
profit, the algorithm subtracts the weighted amount of storage
that must be allocated while processing an operation from the
weighted total amount of storage that can be released after the
processing of that operation. Let e; represent an operation in S
and p(e;) represent the profit from processing e;. To calculate
the value of p(e;), the algorithm must determine the weighted
amounts of storage read w, and written w,,. To compute w,
for the input datasets, the algorithm multiplies the size of each
input dataset by the reading speed at the tier where the dataset
is located. If an operation e; reads the datasets {(D;, ), ...,
(Dj, 1)}, then Equation (1) is used to calculate w;..

wi = (Dix1y) + -+ (Dj*1y) (1)

If an operation e; writes the datasets {(Dy, 1), ..., (Dn,
1)}, then Equation 2 is used to compute wy,.

Wo = (D *w;) + -+ + (Dy, * wy) 2)

Finally, Equation (3) is used to compute profit p(e;) by
subtracting w,, from w;..

ple) = w; —w, 3)

Once the profit for each operation in a set of operations is
calculated, the algorithm sorts the operations in the descending
order of profits, replacing a set of operations with a sequence
of operations.

Higher amounts of faster storage released as early as
possible are anticipated to enhance the performance of future
processing.

This procedure is repeated for each set of operations in
S. Algorithm 4.3 below transforms a sequence of sets of
operations into a sequence of operations.

Algorithm 4.3. Generate a sequence of operations
Input: An Extended Petri Net (B, V, A, W), a sequence of

tiers L = (lo, ..., l), and a sequence of sets S = ({¢e;, ...,
et {em ey}
Output: A processing plan denoted by a sequence of



89 Nan Noon Noon et al.: Optimization of Parallel Data Transfers in Multi-Tiered Persistent Storage

operations E' = (e;, ..., €;).
(1) Create an empty sequence called E' = () and an empty
set of pairs called temp = {}.
(2) Iterate over S and let current set be {e;, ..., e;}.
(a) If the current set has more than one operation, then
(i) Iterate over the current set {e;, ..., e;} and
let the current operation be e;.
- Use the Algorithm 4.4 with input
parameters (B, V, A, W), L, and e;
to compute the profit p(e;) for current
operation e;.
- Append p(e;) totemp={..., p(e;)}.
(i) From temp, sort the profit value in descending
order and gets the corresponding list of
operations (e;, ..., €;).
(iii) Append list of operations (e;, ..., e;) to E =
(..., € ...,e;) and go back to step (2).

(b) Else If the current set has only one operation, then
appen that operation to E and make empty temp
by setting temp = {}.

(3) Return E.

Algorithm 4.4. Calculate a profit p for an operation e

Input: An Extended Petri Net (B, V, A, W), a sequence of
tiers L = (ly, . .., l,,), and an operation e.

Output: A profit p(e) for an operation e.

(1) If e; is a root operation then set p(e) = 0.

(2) Else, compute w; by using equation (1) and w, by using

equation (2).
The value of input/output data blocks and read/write
speed of each tier can be extracted from Extended Petri
Net and L.
(a) Use the value of w; and w, and calculate p(e;)
using euqation (3).

(3) Return the profit p(e) for an operation e.

Example 4.3.In this example, a sequence of sets of
operations S = <{€1, €9, 64}, {63, 67}, {65, €10, 611}, {66,
es}, {€9}, {e12}) is transformed as illustrated in Example 4.2,
along with the EPN detailed in Example 4.1. Multi-tiered
persistent storage L = (g, l1, l2, I3, 14, I5) is applied with the
following read/write parameters: reading speeds of 20 blocks
per time unit at tier [y, 30 blocks per time unit at /1, 40 data
blocks per time unit at /5, 50 data blocks per time unit at /3, 60
data blocks per time unit at /4, and 70 data blocks per time unit
at 15.

Also, assume writing speeds of 10 blocks per time unit at
tier g, 20 blocks per time unit at /5, 30 blocks per time unit at
l2, 40 blocks per time unit at I3, 50 blocks per time unit at /4
and 60 per data block at /5.

The initial step involves iterating over S to select the current
set {e1, ea, es}. Following, compute the profit for each
operation from the current set. Since all operations are root
operations, the profit p(e;) value becomes 0. Append all
operations to E, which becomes E = (e4, €3, €1). Moving
on to the next iteration, select the second set from S, which
is {es, e7}. Compute the profit for operation e3. Compute
w, for operation e by using Equation (1) as w; = (100 * 30)

+ (250 * 40) + (100 * 50) + (180 * 60) = 28,800. Next, use
Equation (2) and compute w, as w, = (200 * 30) + (250 * 40)
= 16,000. Those input-output data sizes can be obtained from
Example 4.1, and the read and write speeds can be obtained
from L. Using Equation (3), obtain p(e3) = 13,000. Append
p(es) to temp, which then becomes p(e3). Repeat this same
procedure for ey, resulting in a set of profits, such as temp =
{p(es), p(er)}. Since p(es) is larger than p(e7) in this step,
put es in the sequence first, followed by e7, resulting in F =
<€4, €9, €1, €3, 67>.

The same procedure is repeated, resulting in the sequence of
operations as follows:

E = (e4, €2, €1, €4, €7, €5, €10, €11, €6, €3, €9, €12).

5. Optimisation of Parallel Data
Transfers

5.1. An Overview

To create a plan for parallel data transfers, the sequences of
operations on the datasets need conversion into data transfers,
and the total number of data transfer processes must be
determined.

A data transfer is represented as a pair (/;, t), where [; is
the level of multi-tiered storage involved in the transfer, and
t is the estimated total number of time units required for the
transfer. A data transfer represents the movement of data
between multi-tiered persistent storage and transient memory.

The directions of data transfers between transient memory
and multi-tiered persistent storage are not distinguished.

A data transfer process implements the data transfers to and
from multi-tiered persistent storage. A data transfer plan is a
sequence of data transfers assigned to a data transfer process.

The following steps are taken to allocate the data transfers
to the processes. Each sequence of operations F; € £ obtained
from Algorithm 4.3 is transformed into a sequence of data
transfers Q; = (({;, tz), ..., ({;, ty)). The transformation
process is explained in Section 5.2.

In the next step, the set of sequences Q = {Q, ...,
Q) } obtained from the previous step is analysed to create a
sequence of sets based on the total number of transfers to or
from a specific level in multi-tiered persistent storage within a
total number of time units. The first set in a sequence includes
the transfers to or from the most frequently utilised levels.
The aim of this step is to prioritise the data transfers that may
have a significant number of conflicts with other data transfers
when accessing the same level in multi-tiered storage. The
classification of data transfers is explained in Section 5.3.

The scheduling of data transfers over data transfer processes
is performed in a number of iterations. At the beginning of
each iteration, the first data transfers from each sequence of
transfers are used to form a candidate set of data transfers.
The candidate data transfers are selected such that none of
them conflicts with any other transfers that have already been
assigned to data transfer processes.

In cases where multiple candidate transfers exist, a set of
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scheduling rules is applied to determine the selection. In the
instance of a singular candidate transfer, it gets allocated to the
processor with the minimal current workload. The scheduling
rules are detailed in Section 5.4. The partitioning of transfer
plans is adjusted upon each transfer assignment to a processor,
generating a fresh set of candidate transfers.

5.2. Creating Data Transfer Plans

A set of sequences of operations £ = {E}, ..., E;,} and
the descriptions of the storage tiers in multi-tiered persistent
storage L = (lp, . .., l,,) are used to create the transfer plans.

For every sequence E; = {ey, ..., €,) and every operation
e; within the sequence, all input datasets {By, ..., By} and
all output datasets { By, 11, - - . , By } are identified.

Both input and output datasets are used to find all the data
transfers.

To transfer dataset B, the process involves performing a
series of transfers.

Let (D;, 1 j) be one such transfer, where D; denotes the total
number of data blocks to be transferred, and /; denotes a level
in multi-tiered persistent storage to be engaged.

Given a (D;, l;) pair, the estimated total number of time
units ¢; required to read/write data blocks in D; at tier [;
is computed, resulting in the creation of a transfer (lj, t;).
Subsequently, a transfer ([}, ¢;) is added to a transfer plan Q);
associated with processing an operation e;. This procedure is
then repeated for the subsequent operation e;; € FE, with
the next transfer (Ix, t;41) appended to a transfer plan for Q);.
After processing the current set F, progression is made to the
next sequence from £ to generate a transfer plan Q1.

Algorithm 5.1 demonstrates the details of the steps to
generate a data transfer plan () from a sequence of E.

Algorithm 5.1. Generate a data transfer plan

Input: A processing plan E and a sequence of multi-tiered
persistent storage L.

Output: A data transfer plan represented by a sequence of
data transfers Q = ((l;, t;), ..., (1. tpn)).

(1) Create an empty sequence @ = ().
(2) Tterate over F and let the current operation be e; € F.

(a) Find a set of input datasets {(D;, l;), ..., (Dj,
lx)} for e; and put it into a temporary set temp =
{(Di, 1), s (Djs lg) }-

(b) If e; is the first read/write operation in a set, then
create a new empty set {}.

(c) Tterate over temp and let the current pair be (D;,
l;).

(1) To process the data size of D;, calculate the
total time units required based on the read
speed (r;) and write speed (w;) of [;.

(ii) If e; is a write operation, then calculate the
total time units as ¢; = D; /r;.

(iii) Else calculate the total time units as t; =
Di / wy.

(iv) Next, create a transfer (;, ¢;).

(v) If e; is the first read/write operation, then
append it into a set created in step (b) like
{. ey (ll, t])}

(vi) Elseife; is the read operation then iterate over

Qtemp~

- If all the data transfers from the current set
are not accessing the level [;, then append a
transfer (I;, t;) to the current set like {. .., (I,
tj)}.

(vii Elseif e; is a write operation, then iterate over
Qtemp but skip all the sets which included
data transfers related to e;’s input datasets.

- If all the data transfers from the current set
are not accessing the level [;, then append a
transfer (I;, t;) to the current set like {. .., (I,
tj)}-

(viii) Else, create a new set and append a transfer
({5, t;) to that set like {(l;, ¢;)} and add that
set to Qiemp-

(d) If step (b) and step (c)(viii) created a new set, then
append the new set to the last Qiemp = (..., {(li,

ti)s oo (UG, te) ).

(e) Find a set of the output datasets {(Dy, 1;), ...,
(Dn, lm) } for e; and put it into temporary set temp

= {(Dk’ lz), ceey (Dn’ lm)}

(f) If the data transfers for the e;’s output datasets are
not generated, then repeat steps (b) to step (d).

(g) Else, append each operation from Q¢emyp to @, set
Qtemp = {}, and go back to the iteration in step
(b) until all the operations from E are transformed
into data transfers.

(3) Finally, return the result Q = ((I;, ), ..., (I, tn)}).

Example 5.1. The example uses a set £ containing two
processing plans E; and E5. Ej consists of a single element
e1 = ({(lo, 10), (11, 20)}, {(I2, 30)}), while E5 consists of
two elements ey and e3 and can be represented as Fy = {ea,
63>, where €9 = <{(ll, 15)}, {(ZQ, 10)}> and €3 = <{<lg, 20)},
{(I2, 10)}). Suppose the data buffer can hold up to 30 data
blocks from tiers /o and /; and up to 25 data blocks from tier
lo. The data transfer speeds to/from tiers [y, {; and l5 are 2, 5
and 10 data blocks per time unit, respectively.

Based on this calculation, it is determined that it will take 5
time units to read 10 data blocks from [, 4 time units to read
20 data blocks from [/, and 3 time units to write 30 data blocks
to l. Using this information, a transfer plan (1 can be created
as ((lo, 5), (11, 4), (I2, 3)) for E;. Similarly, for E5, a transfer
plan Q3 can be generated as ((I1, 3), (l2, 2), (I2, 2), (l2, 2)).

To better understand the results Q = {Q1, Q2}, refer to
Figure 2.
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Figure 2. Visualisation of Q from Example 5.1

5.3. Analysing Transfer Statistics for Conflict
Minimisation

To reduce the total number of conflicts when allocating
transfers to transfer processes, Algorithm 5.2 finds the most
frequently used tiers. The algorithm uses Q = {Q1, ..., Q}
obtained from Algorithm 5.1 to collect statistics on the total
number of transfers and the time spent accessing each level
in multi-tiered storage. The algorithm creates a set of triples,
such as (I;, ¢, ¢t,), where [; is a device level, ¢, is the total
number of transfers accessing tier /;, and ¢, is the total number
of time units spent accessing tier /;.

The algorithm groups the triples by the values of ¢; and sorts
the groups in descending order. Next, it further sorts the triples
in the descending order of the ¢; value within each category of
¢;. The result is a sequence of sets of triples denoted by ({(I;,
Clys €ty )svvos (Lo ciyn i)} oo {llims Clis €ty )s vvon (I s
Ct,)})-

From each triple, the algorithm extracts tiers and creates a
sequence of sets of tiers denoted by o = ({l;, ..., [;}, ...,
{lms -, ln}). This process helps to identify the busiest tier,
which has the highest ¢; and highest ¢; value and is most likely
to result in conflicts.

Algorithm 5.2. Generate analyzed transfers
Input: A set of sequences of data transfers Q = {Q1, ...,

Qn}

Output: Statistics on data transfers o = ({l;, ...

{lnys - ln)}

(1) Create an empty sequence called o = () and an empty
set called temp = {}.

b

(2) Iterate over Q and let current sequence be Q;.

(a) Iterate over ); and let current transfer be (I;, t;).

(1) If l; is already included in a triple from temp,
then retrieve that triple and update ¢;, by
adding 1 and ¢;, by adding ¢;.

(ii) Else, create a new triple like (I;,¢y;,ct,),
where ¢;; = 1 and ¢;; = t;. Then, add the
new triple to temp=1{..., (l;,c1,,ct,) }-

(3) Sort temp in descending order based on the value of ¢
and group the same value of ¢;.

(4) Within the same group of ¢;, sort the triples in
descending order based on the value of ¢;.

(5) Group the triples with the same value of ¢, into sets and
add them to a sequence of a set of triples like ({(I;, ¢,
Cti)s oos (s crynce))}s o oo {llms Cis €20)s s (I
e, C, )

(6) Next, extract the tier and create a sequence of sets of
tiers o= ({(Lis ... ik oo {lms - P 1

(7) Return the .

Example 5.2. A set Q = {Q1, Q2} is utilized from Example
5.1.

Algorithm 5.2 iterates over Q and lets the current sequence
be 1. Then, the algorithm iterates over the transfers in ¢J; and
lets the first transfer be (5, ly). The first transfer contributes to
a triple (Ip, 1, 5) and appends it to temp as {(lo, 1, 5)}.

The same process is repeated, yielding the updated temp =
{(l0, 1.9), (I, 1, 4), (I, 1, 3)}

After the iterations over (); are completed, the algorithm
processes the following sequence () in the same way.

The same process is repeated, and eventually, the algorithm
will have temp = {(lo, 1, 5), (11,2, 7), (l2, 4, 9)}.

Next, the algorithm groups the same values of ¢; and
arranges the groups in the descending order of ¢; to get a
sequence of triples temp = {(l2, 4, 9), (11,2, 7), (lo, 1, 5)}.

Since there are no triples with the same values of ¢;, there
is no need for sorting over the secondary key c;. Finally, the
algorithm generates ({(l2, 4, 9}, {(l1, 2, D}, {(lo, 1, 5)}),
and it extracts the tiers and creates a = ({l2}, {l1}, {(lo}).

5.4. Applying Scheduling Rules

To assign a data transfer to a transfer process with the lowest
workload, a candidate transfer from Q must be selected. First,
an algorithm identifies all candidate transfers in Q. 1If all
candidate transfers are eliminated, a single idle time unit is
assigned to the process. If only one candidate transfer is
found, it is assigned to the process with the lowest current
workload. If multiple candidate transfers are found, the
scheduling rules listed below are applied until a single transfer
is left.

Rule 0: Select the candidate transfers that do not conflict
with the others.

Eliminate any candidate transfers that do not satisfy the
following conditions. Two data transfers (¢;, I;) and (t;, ;)
assigned to a data transfer process conflict when

1. both transfers try to access the same level of multi-tiered
storage within the same time frame and/or

2. both transfers are part of the same sequence of transfers,

and their order in the data transfer processes is opposite
to their order in their transfer plan.

Rule 1 is applied when more than one candidate data transfer
remains after the elimination of conflicting candidate transfers.

Rule 1: Select the candidate transfers included in the
longest sequence of transfers Q.

The length of a sequence of transfers is defined as the
total number of time units needed for processing the transfers.
This rule aims to minimise the overall transfer time and to
balance the workload among the data transfer processes. For
example, when a conflict over access to the same tier is found,
the transfers included in the shorter sequences can be more
efficiently allocated.
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Rule 2 is applied when more than one candidate data transfer
remains after applying Rule 1.

Rule 2: Prioritise data transfers that have the potential to
cause conflicts in the future.

To identify the relevant transfers, the rule uses a value
of o obtained from Algorithm 5.2 and focuses on the data
transfers accessing the same tier as the first set in . When
no suitable transfers are found within the first set in «, the next
set is examined, and the process continues until one or more
potential transfers are identified.

Rule 3 is applied when more than one candidate data transfer
remains after applying Rule 2.

Rule 3: Select the candidate transfers included in the
sequence of transfers that consist of the largest number of
transfers from the set of transfers returned by Rule 2.

This rule minimises the idle time of the processors. A
sequence with many shorter transfers can quickly fill the gaps
when a conflict occurs.

Rule 4 is applied when more than one candidate data transfer
remains after applying Rule 3.

Rule 4: Select the shortest transfers.

This rule is based on the observation that the smaller size
of the candidate transfers reduces the waiting time for future
allocations for other transfers, and it allows for more efficient
allocation of the remaining sequences of transfers.

Rule 5 is applied when more than one candidate data transfer
remains after applying Rule 4.

Rule 5: If more than one transfer is left after applying Rule 4,
randomly select and assign one of the transfers to a processor
with the lowest current workload.

The scheduling rules always provide a single candidate
transfer that is assigned to a data transfer process with the
lowest current workload. The algorithms in the next section
provide a formal description of the process described above.

5.5. Enhancing Data Transfer Allocation Through
Effective Scheduling Rules

An input to Algorithm 5.3 is a set of sequences of transfers
Q={Q, ..., Qn} obtained from the transformation of query
processing plans and a set of processors P = {P, ..., Py, }.
The algorithm returns updated allocations of the data transfers
to the processor P = {Py, ..., Py, }.

Algorithm 5.3. Generate allocation plan
Input: A set of sequences of transfers Q = {Q1, ...
and a set of processes { P, ..., P }.
Output: Updated set of processes P ={ Py, ..., P}
(1) Copy a set of input sequences of transfers Q into a
temporary variable Temp; = {Q1,...,Qm}-
(2) While T'emp, is not empty, iterate over the following
steps:

7Qm}

(a) Get a value of o from Algorithm 5.2 using T'emp;
as the input.

(b) Get two sets of data transfer processes:
{P,,..

pr =
., P;} with the lowest workload, and p;, =

{P;,..., P} with the highest workload. Let P =
p1Y pp.

(c) Choose a data transfer process P; from the lower
workload processes, where P; € p;, and its
allocation plan is a set of transfers, which is
denoted P; = {(I;, tx), ..., (s, ty) }.

(d) Collect all the candidate transfers from T'emp; and
put them into a set of candidate transfers ). =

{ist5), .y (I, t) 1
(e) Use Algorithm 5.4 with input Q). and py, to apply
Rule 0 and update ). accordingly.

(f) If Q. contains only one transfer, then get a transfer
from (). and which is denoted (I;, ;).

(g) Else, if ). contains more than one transfers, then
use Algorithm 5.5 with input a set of sequences
Tempq, a set of candidate transfers Q., and a
sequence of sets « to select a candidate transfer

(lir t5).
(h) Else, if Q. is empty, then add an idle time unit on
all processors in p; and go back to step (2)(b).

(i) Assign a selected candidate transfer (I;, t;) to the
allocation plan P;.

(i) Remove the transfer (I;, t;) from Temp; and go to
step (2)(a).

(3) Once all transfers have been assigned, the updated set
of allocation plans for processors P = {P1, ..., P} is
returned.

The first step Algorithm 5.4 gets the candidate transfers
Qc ={i, t;), ..., (, tn)} and selects a group of high
workload processors known as pj, = {P,, ..., P,}. The next
step removes any transfers that conflict with each other from
the set of candidate transfers, denoted as ().. Finally, the
modified set of candidate transfers @, is returned as output.

Algorithm 5.4. Apply Rule 0 to eliminate conflicted candidate
transfers.
Input: A set of candidate transfers Q. = {(l;, t;), ..., (In,
tm)}, and pp, = {Py, ..., P,}.
Output: Updated set of candidate transfers Q. = {(l, ty),
oo 1))
(1) If py is empty, then no elimination is needed because
there is no conflict, and go to step (3).
(2) Else eliminate the conflicted transfers from Q..

(a) Next, remove all the transfers from Q. if the
transfers come from the same sequences that are
allocated at the end of each processor in py,.

(b) Next, get all the levels £ = {l;,...,l;} from
transfers that are allocated at the end of each set
of data transfers from high-workload data transfer
processes in pp,.

(c) Next, remove all the sequences from (). that the
level of the transfer is in L.

(3) Return Q. = {(ly, ty), ..., (los tp)}
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Algorithm 5.5 gets a set of sequences Temp; = {Q;, ...,
Q;}. aset of candidate transfers Q. = {(l;, t;), ..., (ln, tm)}
and a sequence of sets of tiers & = ({l;, ..., i}, ..o, {lm, - - s
I, }). The next step removes candidate transfers from the Q.
according to the schedule rules. Finally, the modified set of
candidate transfers @, is returned as output.

Algorithm 5.5. To assign the best candidate transfer to a data
transfer process, apply the Rules 1 through 5.

Input: A set of sequences Temp; = {Q;, ..., Q;}, a set
of candidate transfers Q. = {(l;, t;), ..., (In, tm)}, and a
sequence of sets of tiers o = ({{;, ..., [;}, .. ., {lm, - . I })-

Output: Selected a candidate transfers (I, t,)

(1) According to Rule 1, select all transfers from (). that
belong to the longest sequence in T’emp;, and remove
any that do not meet this criteria.

(2) If Q. has more than one transfer, then, apply Rule 2,
itereate over « and let the currnet set be {l;, ..., [;}.

(a) Select all the transfers from (). that access the
same tier as one of the transfers in the current set
and place them in Q¢ermp.

(b) If Qtemyp is not empty, then update Q. = Qiemp
and exit from iteration and go to step (2).

(3) If . has more than one transfer, then apply Rule 3,
select all transfers from (). that appear in the sequences
with the highest number of transfers in T'emp;, and
remove all the transfers from (). which are not selected
by Rule 3.

(4) If Q. has more than one transfer, then apply Rule 4,
select all transfers with the smallest number of ¢ values
from @., and remove all the transfers from ). which are
not selected by Rule 4.

(5) If Q. has more than one transfer, then apply Rule
5, select one transfer randomly from ()., and let the
selected transfer be (I, t,)).

(6) Return the selected transfer as (I, ).

Example 5.3.In this example, three sequences of data
transfers Q = {Q1, Q2, Q3} are assigned to two data transfer
processes P; and Ps.

Q1= {((lo, 5), (la, 3), (0, 2), (I3, 2), (l0, 5), (I2, 3))

Q2 = (12, 3), (11, 2), (10, 2), (I3, 2), (12, 3), (0, 3))

Qs = {(11. 2), (I3, 2), (14, 2), (12, 5, (11, 4), (Is, 2))

In the beginning, the algorithm chooses a data transfer
process with a lower workload, specifically P; and P», which
have no transfers assigned yet. This means that both processes
have no workload, and the algorithm randomly selects P; to

begin with. The next step is to gather candidate transfers from
Q and to put the candidates in @, which consists of {(lg, 5),
(I2, 3), (11, 2)}. Based on Rule 0 from Algorithm 5.4, there
are no conflicts, and there is no need to eliminate any transfers
from a set of candidate transfers ().. Since there is more than
one transfer in Q)., Algorithm 5.5 is used to select a transfer
from Q. and assign it to P;. Applying Rule I updates Q). to
{(l2, 3)}. Since Q). has only one transfer at this point, it can
be assigned to processor P; = {(la, 3)).

In the next iteration, P is chosen as the processor with the
lowest workload. The candidate transfers from Q are collected
and saved in @Q., which consists of {(lo, 5), ({1, 2), (I1, 2)}.
Based on Rule 0 from Algorithm 5.4, there are no conflicts, and
there is no need to eliminate any transfers from Q... Since there
are multiple transfers in Q., Algorithm 5.5 is used to select a
transfer from (). and allocate it to P,. Applying Rule 1 updates
Q. to{(lp,5)}. A single transfer in Q.. is assigned to processor
Py = ((lo, 5)).

The total length of transfers assigned to P is 5 time units
long, and the total length of transfers assigned to P; is 3 time
units. Therefore, in the next iteration, P; is chosen again as the
data transfer process with the lowest workload. The candidate
transfers are collected and saved in Q. = {(l4, 3), ({1, 2), (I1,
2)}. Based on Rule O in Algorithm 5.4, there appears to be a
conflict that requires the removal of one transfer: ({4, 3) from
Qe

To allocate a transfer from Q. to Py, Algorithm 5.5 is used,
as there are multiple transfers in Q.. Applying Rule I updates
Q.={(l1,2), (1, 2)}, and applying Rule 2 updates Q. = {(I1,
2)}. Since Q. only has one transfer now, it can be assigned to
processor Py = ((l2, 3), (11, 2)).

The same iterations are repeated until all data transfers are
assigned to either P, or P». The complete data transfer plans
for P; and P are the following.

Pl : <(Z2’ 3) (ll’ 2)’ (l4, 3)’ (14, 2)’ (l2a 5)’ (13’ 2)’ (12s 3)’
(11,4, (13, 2))

Pyt {(lo, 5), (15, 2), (l1, 2), (lo, 2), (I3, 2), (14, 2), (lo, 5),
(I2,3), (14, 3))

Figure 3 illustrates the complete data transfer plans.

For comparison, the complete data transfer plans for the
same data transfer Q = {Q1, Q2, Q3} are created through the
random assignment of the data transfer to the processes, i.e.
by applying Rule 5 only. The results are illustrated in Figure 4.
Upon comparison, it is clear that the results shown in Figure
3, which incorporates multiple rules, are superior to the results
based solely on Rule 5, as seen in Figure 4.

P 3 [ .2 (143) (2 | (1, 5)
P, (I, 5) (15, 2) (4,2 (75 2) (15, 2) (1,2)
123 [a[s[e]7][s8]o]wo]u|ln]n|u]s
Pl w2y | w3 (1,4 | @2
Py (I, 5) (12, 3) (4, 3)
6 [ 17 [ 18] 1920 [21[22]23]24[2]2

Figure 3. Allocated data transfers to the processors through the application of the scheduling rules proposed in section 5.5.
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Py (1, 3) (/s 3) (3, 5) (I, 4)
15 16 [ 17 [ 18 [ 19 [ 20 [ 21 [22 [ 23 [ 24 [ 25 [ 26 [ 27 [ 28 [ 29

Figure 4. Allocated transfers over processors by using Rule 5.

5.6. Comparative Analysis and Complexity Evaluation

The implementation of the scheduling rules presented in
Section 5 leads to a more balanced assignment of data transfers
to data transfer processes.

A comparison of the results has been conducted, revealing
that utilizing more rules, as depicted in Figure 3, is more
effective than relying on random assignments, particularly in
the application of Rule 5 in Figure 4.

In Figure 3, the total time units required to complete the data
transfers is 26, while Figure 4 shows 29. Algorithm 5.3 does
not include idle time units across the transfer processes during
the transfer allocation process.

Algorithm 4.1 produces a sequence of sets of operations (.5)
by analysing the input EPN. The algorithm’s complexity is
linear and is denoted as O(N ), where N represents the number
of operations in V' from the EPN.

Algorithm 4.2 creates sets of operations by processing a
given set of operations. It partitions the input set of operations
into various sets. The complexity of this algorithm is O(N —
1), where N represents the number of operations in the input
set of operations.

Algorithm 4.3 creates a set of operations called E by
processing a sequence of sets of operations called S. The
complexity of this algorithm is linear and is denoted as O(V),
where N represents the number of operations in S.

Algorithm 4.4 calculates the profit for a single input
operation. Its complexity is linear, indicated by O(NV), where
N represents the operation.

A sequence of transfers () is generated by Algorithm 5.1
using a sequence of operations E. The algorithm has a
complexity of O(NM), where N is the sequence of E, and
M is the set of input datasets for each operation in F.

This process, referred to as Algorithm 5.2, produces a
sequence of sets of tiers denoted as a. It accomplishes this
by analysing a group of sequences of transfers known as (Q).
The algorithm’s complexity is O(N), where N is determined
by the number of transfers in Q.

The process plan for a set of processes is generated by
Algorithm 5.3 using a sequence of transfers known as Q. The
algorithm’s complexity is O(NN), where N refers to the number
of transfer in Q.

The process outlined in Algorithm 5.4 updates the set of
candidate transfers (). by applying Rule 0 and removing
certain transfers from @).. The complexity of this algorithm
is O(N), with N representing the number of input datasets of
each candidate transfers from ().

The set of candidate transfers (). is updated by Algorithm
5.5, which uses Rules 1 to 5 and removes some transfers from
Q.. The complexity of this algorithm is O(NN), where N
represents the number of transfers in the input set of candidate
transfers.

6. Experiments

The experiments included 29 queries transformed into the
following series of data transfers Q. Q1 = ((lo, 3), (11, 2), (I3,
4), (l2, 4), (11, 2))

Q2 - <(Z3’ 3)7 (ZQ’ 5)’ (lOa 2)» (l49 3)a (ll’ 3)>
Qs =((l2,2), (4, 3), (lo, 4), (1, 3))

Qa4 =((3,3), (lo, 4, (11, 4), (I2, 3), (lo, 2))
Qs = (11,4, (I2, 3), (13, 2), (14 2), (lo, 3), (14, 2))
Qs = ((l2,3), (11, 5), (I3, 4))

Q7= ((ls, D, (I3, 5))

Qs = ((lo, 4, (13,2), (l2,2) )

Qo =((l3,3), (14,2) )

Q10 =((l2,3), (11, 2) )

Qll = <(13’ 2)’ (ll’ 2) >

Q12 = ((l2, 3), (14, 3), (l2, 4) )

Q13 =((l1,3), (lo,5))

Q4= ((lo,4), (14, 3), (12, 2), (l0, 3) )

Q15 = ((l1, 3), (12, 3), (lo, 5))

Q16 = ((I2,3), (11, 2), (I3, 3), (12, 2) )

Q17 ={((l1,4), (14, 3), (I3,2) )

Q18 = ((l2,3), (I1,5), (I5, 1))

Q19 = (14 3), (l2, 3))

Q20 = ((I3, 2), (I2, 3), (15, 2))

Q21 = ((11,3), (1o, 3))

Q22 = ((l3,3), (11, 3))

Qa3 = ((l2,2), (11, 3))

Q24 =((11, 8))

Q25 = ((I2, 3), (I3, 3), (14, 3), (15, 2), (11, 3))
Q26 = ((ls, 3), (11, 3), (14, 3), (17, 3) )
Q27 =((11,9))

Qa8 = ((I1,5), (I2, 3), (I3, 2), (I5, 2), (14, 2) )
Q29 = ((11, 5), (l6, 4), (14, 3), (17, 3))

Twelve experiments were conducted in total. In the first
three experiments, seven sequences Q were utilized: {Q1, Q2,
Q3, Q4, Qs, Qs, Q7}, with four, three, and two data transfer
processes, respectively. The subsequent three experiments

employed six sequences Q: {Qs, Qo, Q10, Q11, Q12, Q13},
with four, three, and two data transfer processes, respectively.
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For the ensuing two experiments, four sequences Q were
used: {Q14, Q15, Q16, @17}, With three and two data transfer
processes, respectively. Another experiment involved three
sequences Q: {Qi1s, Q19, Q20}, with two data transfer
processes. Subsequent experiments employed a different set
of three sequences Q: {Q21, Q22, @23}, with two data
transfer processes. Additionally, a separate experiment utilized
another set of three sequences Q: {Qa4, Qa5, @26}, with
two data transfer processes. Following these, another set of
three sequences Q was employed: {Q27, Q2s, @29}, With two
data transfer processes. The experiment plans are displayed in
Table 2.

Table 2. Experiment Plans.

Experiment Number of Total number of Number of

time units Processors
97
97
97
40
40
40
42
42
22
17
34
38

sequences
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The various rules were applied to each experiment, and
the processing times of different scheduling methods were
compared. The following scheduling rules were used to assign
data transfers to data transfer processes in each experiment:

1. Shortest processing time (SPT): Select the transfer with
the shortest length, and if more than one transfer is
found, select the sequence with the smallest total time
units.

2. First come, first served (FCFS): Select the transfer that
belongs to the first sequence in the queue.

3. Combination of scheduling rules (CSR): This combines
the scheduling rules proposed in this paper.

4. Random scheduling (R5): Select the transfer randomly
chosen by the system.

Finally, all solutions were compared with the optimal
solution denoted as the optimal resource allocation plan
(ORAP).

Table 2 aggregates the information related to the datasets
and the scheduling rules used in each experiment. For instance,
the first three experiments involved seven queries that took
a total of 97 time units. Experiment 1 used these queries
with four processes, while Experiments 2 and 3 used the same
queries with three and two processes, respectively.

Four different scheduling rules were applied for each
experiment, and the execution time was recorded in Table 3.
The processing times were measured in time units, which were
also applied to each transfer. Despite the same dataset being

used for Experiments 1, 2, and 3, the results varied due to
the different scheduling rules employed in each experiment.
Finally, the scheduling rules and experiment plans outlined
in Table 2 were utilized to calculate 48 test cases, and the
execution time was recorded in Table 3.

Table 3. Experiment results.

Experiment ORAP CSR SPT FCFS R5
1 25 25 30 30 33
2 33 33 34 34 37
3 49 49 55 52 54
4 10 10 15 14 16
5 14 14 16 15 19
6 20 20 21 20 23
7 14 14 16 15 18
8 21 21 23 23 25
9 11 11 17 13 19
10 9 9 14 11 16
11 17 17 17 18 17
12 21 21 23 28 30
Total 244 244 283 275 307

In summary, the total result of CSR was 244 time units, and
comparing it with the ORAP result showed the same output
results. As seen in column SPT, the total result was 283
time units, with 39 idle time units, and in column FCFS,
the total result was 275, which had 31 idle time units when
processing the 12 experiments. In the last rule, R5, the total
processing time was 307, with 69 idle time units occurring in
the experiments.

Based on the results obtained from the experiments,
a comparison was made among the different scheduling
methods: ORAP, CSR, SPT, FCFS, and RS.

1. ORAP and CSR: These methods consistently performed
equally well, achieving the lowest time units in all
the experiments. They were the most efficient and
dependable in reducing time units.

2. ORAP and SPT: In most of the experiments, ORAP
performed better than SPT by consistently achieving
lower time units. Nevertheless, there were instances,
such as Experiments 4 and 5, where SPT came close
to matching ORAP’s performance.

3. ORAP and FCFS: In most of the experiments, ORAP
tended to perform better than FCFS by maintaining
lower time units. However, FCFS seemed to have higher
time units than ORAP in several scenarios.

4. ORAP and R5: In most of the experiments, ORAP
performed better than R5 and consistently had lower
time units. R5, by contrast, tended to have higher time
units in comparison to ORAP.

After conducting several experiments, it was found
that the ORAP and CSR scheduling methods consistently
outperformed other methods in terms of minimizing time units.

CSR was found to be the most efficient and reliable
scheduling method. Although the SPT method sometimes
came close to ORAP and CSR, it generally took longer time
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units in most of the experiments. Similarly, the FCFS and R5
methods also had variable performance, but they consistently
took longer time units compared to ORAP and CSR. Although
the SPT, FCFS and R5 methods performed moderately well,
they generally took longer time units compared to ORAP
and CSR. Across all the experiments, scheduling ORAP and
CSR consistently had the lowest time units, ranging from
9 to 49 time units. Scheduling SPT and FCFS generally
performed slightly worse, with time units ranging from 14 to
55. Scheduling R5 had the highest time units among all the
methods, ranging from 16 to 30.

Overall, ORAP and CSR were found to be the most efficient
in minimising time units, while R5 was the least efficient in
most cases. SPT and FCFS fell in between, with varying
performance depending on the experiment. In conclusion,
ORAP and CSR are the top choices for minimising time units
and ensuring efficient scheduling. Although SPT, FCFS and
R5 are viable alternatives, they may not consistently achieve
the same level of efficiency as ORAP and CSR.

7. Summary and Conclusions

This work presented new algorithms that create efficient
processing plans for parallel data transfers between the
levels of multi-tiered persistent storage. The optimisation
concentrates on balancing the workload among the data
transfer processes and reducing the idle time of the processes.
In particular, the paper addressed the problem of scheduling
parallel data transfers between the storage levels in a pipelined
data processing model. The proposed algorithms can discover
the data transfers needed to process the operations of database
applications, perform the partitioning of data transfers to
reduce the number of conflicts in the access to persistent
storage and apply rule-based scheduling to minimise the
processing time.

The process starts from the conversion of query processing
plans into EPNs and then into parallel data transfer plans.
The scheduling algorithm minimises the total processing time
for a given set of applications through the elimination of
conflicts and delays during parallel data processing. The
proposed rule-based algorithms aim at the even distribution of
the workload among the data transfer processes.

This work offers a practical approach to the efficient
scheduling of parallel data transfers in multi-tiered persistent
storage. While the scheduling algorithms may not always
yield the optimal solution, they balance the quality of the data
transfer plans and the time taken to generate the plans. The
approach is based on reducing the initial set of candidate data
transfers through the application of elimination rules, allowing
for flexibility in the trade-offs between the processing time and
the quality of the solution. The experiments showed that rule-
based scheduling is highly effective and produces the optimal
results in most cases. In general, utilising multiple rules in
combination yields superior results compared to using fewer
scheduling rules. However, it is worth noting that employing
more rule combinations requires more time for computation

than using a single scheduling rule. As a result, the algorithms
presented in this paper aim to select a limited number of rules
and create the most effective combination to improve resource
allocation for parallel processing within a shorter timeframe.
In conclusion, the paper presented practical algorithms
for creating efficient processing plans that facilitate parallel
data transfers in multi-tiered persistent storage systems.
These algorithms strike a balance between optimisation and
computational efficiency, making them suitable for real-world
applications where practicality and time constraints often
outweigh the pursuit of absolute optimality. The research
contributions shed light on the challenges and solutions
related to parallel data transfers in multi-tiered persistent
storage, enable organisations to effectively handle large-scale
data processing tasks and enhance performance and resource
utilisation in commercial data analysis applications.

Note

This journal article is an extended version of a previously
published article, Scheduling Parallel Data Transfers in Multi-
tiered Persistent Storage [1] presented at the ACIIDS 2022
conference. The aim is to provide a more comprehensive
analysis and include additional data and insights not covered
in the initial article. Moreover, the extended journal
article introduces innovative methodologies for generating
operation sequences and expands upon the scheduling rules by
incorporating more algorithms. Additionally, it presents new
experimental results. These enhancements greatly improve the
optimization, concentrating on balancing the workload among
the data transfer processes and reducing their idle time.
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