
 

American Journal of Information Science and Technology 
2021; 5(2): 25-29 

http://www.sciencepublishinggroup.com/j/ajist 

doi: 10.11648/j.ajist.20210502.12 

ISSN: 2640-057X (Print); ISSN: 2640-0588 (Online)  

 

Some Characterization of the Function Space Type of 
Lebesgue−Morrey 

Rena Eldar Kizi Kerbalayeva
1, 2 

1Institute of Mathematics and Mechanics, National Academy Science of Azerbaijan, Baku, Azerbaijan 
2School №227, Baku, Azerbaijan 

Email address: 

 

To cite this article: 
Rena Eldar Kizi Kerbalayeva. Some Characterization of the Function Space Type of Lebesgue−Morrey. American Journal of Information 

Science and Technology. Vol. 5, No. 2, 2021, pp. 25-29. doi: 10.11648/j.ajist.20210502.12 

Received: March 11, 2021; Accepted: March 30, 2021; Published: May 14, 2021 

 

Abstract: As in many areas of Mathematics, we need precise definition and some characterization of function space in order 

to be absolutely clear. This paper seeks to do that and introduces new definitions and notations to aid our study. I also look at 

reversible processes of proofs and a new type of function spaces. In this scientific paper we have studied new sub of functions, 

sub of space of these functions. The new function spaces were investigated in this paper. In the present scientific work we have 

studied the differentiability functions, some differentiability properties of this type function and in particular, characterization 

of the differentiability spaces for the functions many groups of variables. At the start of this paper, you will see list of markings 

that are covered in the paper. Then I gave definition of new normed funksion spase. Following you can see several 

caharacterization of these spaces and proofs of these caracterization too. Finally, there is connection, known as the 

Fundamental Analysis, between functions and derivatives of these functions which makes the characterization of functions 

spaces as a practical tool for science and engineering. The function space is also use to solve many interesting problems some 

scientific branches like economics, finance, informatics and probability. 
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1. Introduction 

Let � � ��  and 1 � � � �;  �, �  be naturals, where 

�� 
 � 
 �� � �. We consider the sufficient smooth function 

f(x), where the point � � ���, … , ��� � ��  has coordinates 

�� � ���.�; … ; ��,��� � ���  (k � �� � � 1,..., s}). More 

precisely, �� � ��� � ��� �···� ��! . Thus we consider the 

fixed, non−negative, integral vector l=�"�, … , "��  such that, 

"� � �"�.�; … ; "�,��� , (k � ���  that is, "�,# $ 0 , �& �
1, … , ��� for all ' � �� . Here we consider by Q the set of 

vectors i� �(�, … , (��  where ik=1,2,…, ��  for every ' � �� . 

The number of set Q is equal to: |*| � ∏ �1 
 ���.�
�,�  

Therefore, to the vector i � �(�, … , (�� � *,  we shall 

correspond the vector "- � �"�
-�; … ; "�

-!� of the set of 

non−negative, integral vectors l= �"�, … , "��,  where ". �
�0,0, … ,0�, "�

� � �"�,�, 0, … ,0�, … , "�
-� � �0,0, . . , "�,���  for all 

' � ��. Then to the vector �- , we let correspond the vector 

" /- =�" /�-� , " /�-� , … , " /�-!  �,  where " /�
-� � 0" /�,�

-� , " /�,1
-� , … , " /�,��

-� 2  (' � ���. 
Here the largest number " /�,#

-�  is less than "�,#
-�  for all "�,#

-� >0, 

when "�,#
-� =0 then we assume that " /�,#

-� � 0 for all ' � ��. [1, 9-

11] 

2. Definition and Preliminaries 

Definition. We denote by 

34,5,6,7���                                        (1) 

normed Lebesgue−Morrey space of locally summability 

functions f, on G, with finite norm ( 8- $ "- $ 9- : 0 , 

i=1,2,…, n). 
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;<;4,5,6,7: > = ;<;?@,A,B,C�>� = �DE�∈� FG H∏ IJ'K1−|M'|NE'∈�� ×∞0 ;<;E,�JM���PQ ∏ RJ'J''∈�� S1 QT ,                            (2) 

where |M�|=∑ M�,#��#,� ; IJ�K� = min�1, J�Y. [2, 3, 8, 12, 13] 

3. Main Results 

Let us give some characterization of 34,5,6,7���: 

1) For every Q > 0 the following inequality take place: 

34,5,6,7��� ⊂Z 34,5,6��� ⊂Z 34���, 
that is 

;<;4,> ≤ ;<;4,5,6: > ≤ [;<;4,5,6,7:> .                                                                   (3) 

2) The space 34,5,6,7��� is complete. 

3) For c>0 we have 

;<;4,5,\6,7: > = �
]!C ;<;4,5,6,7: >. 

4) For any ϰ=�M�, … , M�� > 0 we get: 

a);<;4,.,6,^: > = ;<;4,> ; 

b);<;4,�,6,7: > ≥ ;<;^,>. 

5) If E ≤ _, �`ab ≤ �`54 , 1 ≤ Q� ≤ Q1 ≤ ∞ then 

3b,a,6,7���� ⊂Z 34,5,6,7���� 

and 

;<;4,5,6,7�: > ≤ ;<;b,a,6,7�: >.                                                                         (4) 

Proof 1 We must first proof “(3)”: 

;<;4,5,6,7: >7 = �DEc∈> G d∏ IJ�K�`eB�eA@�∈f! ;<;4, >gB�c�h7 ×.̂ ∏ ij�j��∈f! =�DEc∈> kG 0∏ IJ�K�`|6�|5�∈f! ×.̂  

l |<�m�|4
>gB�c�

Rm�7 4⁄ o p RJ�J��∈f!
≥ 

�DEc∈>�DE.q1jq^ rl ∙∙∙ l spIJ�K�`|6�|5
�∈f!

1j
j

1j
j

× l |<�m�|4
>gB�c�

 Rm�7 4⁄ o p RJ�J��∈f!
≥ 

p 2`|6�|5
�∈f!

�DEc∈>�DE.q1jq^ rpIJ�K�`|6�|5
�∈f!

× l |<�m�|4
>gB�c�

 Rm�7 4⁄ o l ∙∙∙ l pIJ�K�`|6�|5
�∈f!

1j
j p RJ�J��∈f!

≥1j
j

 

[�DEc∈>�DE.q1jq^ p 0IJ�K�`|6�|5
�∈f!

× l |<�m�|4
>gB�c�

 Rm�7 4⁄ = [;<;4,5,6: >7 . 
Proof 2. Let �<�Y�,�^  be a fundamental consistent in 34,5,6,7���, that is, for all u > 0, we can take number ��u�, such that �, 9 ≥ ��u�, 

�DEc∈> dG ∙∙∙.̂ G ∏ IJ�K�`eB�eA@�∈f!.̂ × ;<� − <v;4,>gB�c�27
 ∏ ij�j��∈f! < u.                                                (5) 

Using “(3)” we get 
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�DEc�> ∏ IJ�K�
`eB�eA

@��f! �  ;<� − <v;4, >gB�c�2 < u                                                    (6) 

and because of 34,5,6��� is complete, we have a function such that <. ∈ 34,5,6��� 

pIJ�K�`|6�|54
�∈f!

× ;<� − <.;4, >gB�c� →→ 0, �� → ∞�. 
Obviously, for all t∈ �0, ∞� and for every � ∈ �, we hold 

spIJ�K�`|6�|54
�∈f!

;<� − <.;4, >gB�c�y
7

× p 1J� → 0 �� → ∞�.�∈f!
 

Then using theorem Fatou we get 

l∙∙∙^
.

l spIJ�K�`|6�|54
�∈f!

;<� − <.;4,>gB�c�y
7

 ×^
.

p RJ�J��∈f!
≤ �DEvz��{� l∙∙∙ l spIJ�K�`|6�|54

�∈f!
×^

.
^

.
;<� − <v;4, >gB�c�27 p RJ�J��∈f!

, 
for � ≥ ��u� and for all � ∈ �. Then we have 

�DEc∈> l∙∙∙^
.

l spIJ�K�`|6�|54
�∈f!

;<� − <.;4, >gB�c�y
7

×^
.

p RJ�J��∈f!
< u. 

Because of �<�Y�,�^  is fundamental consistent in 34,5,6,7���, then 

;<.;4,5,6,7: > ≤ ;<� − <.;4,5,6,7: > + ;<�;4,5,6,7: > ≤ u+M, (M>0), 

that is <. ∈ 34,5,6,7���. 
But it means that, the space 34,5,6,7��� is complete. 

Proof 3. 

;<;4,5,\7,6: > = �DEc∈> |sl∙∙∙^
.

l pIJ�K�`\|6�|54
�∈f!

;<;4, >g}B�c�
^

.
y

7
× p RJ�J��∈f!

~
� 7⁄

= �DEc∈> |l∙∙∙^
.

l spIJ�\K�`|6�|54
�∈f!

×^
.

 

;<;4, >g}B�c�27 p RJ�J��∈f!
~

� 7⁄
= �DEc∈> s 1�� l∙∙∙^

.
l spID�K�`|6�|54

�∈f!
;<;4, >�B�c�y

7
×^

.
 

p RD�D��∈f!
y

� 7⁄
= 1�� 7⁄ × �DEc∈> sl∙∙∙^

.
l spID�K�`|6�|54

�∈f!
;<;4, >�B�c�y

7
×^

.
p RD�D��∈f!

y
� 7⁄

= 1�� 7⁄ ;<;4,5,6,7: > . 
Proof 4. It is easy to verify 4(а). Let us proof 4(b). It is known that 

 ;<;^,> ≤ ;<;4,�,6: >. 

Then taking the inequality “(3)” then it completes proof 4(b). 

Proof 5. We knew that 

;<;4,5,6: > ≤ ;<;b,a,6: >, 

following for any t, 0 < J ≤ 1, 

pIJ�K�`|6�|54
�∈f!

;<;4, >gB�c� ≤ 
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� ∏ IJ�K�
`eB�e�

���f! ;<;b, >gB�c�, 
then we get 

pIJ�K�`|6�|5 4 ` �7�
�∈f!

;<;4, >gB�c� ≤ 

≤ ∏ IJ�K�`eB�e� � ` �C��∈f! ;<;b, >gB�c�, 

�DEc∈> |l∙∙∙�
.

l spIJ�K�`|6�|54
�∈f!

;<;4, >gB�c�y
7��

.
× 

p RJ�J��∈f!
~

� 7�⁄
≤ �DEc∈> |l∙∙∙�

.
l spIJ�K�`|6�|ab

�∈f!
×�

.
 

;<;b, >gB�c�27� ∏ ij�j��∈f! �� 7�⁄
. 

Taking 

1 ≤ Q� ≤ Q1 ≤ ∞ 

then we get “(4)”. In addition for every J > 1 

pIJ�K�̀
�7�

�∈f!
;<;4,>gB�c� ≤ pIJ�K�̀

�7�
�∈f!

;<;b, >gB�c� 
and 

�DEc∈> |l∙∙∙^
�

l 0;<;4, >gB�c�27�  ^
�

p RJ�J��∈f!
~

� 7�⁄
≤ 

≤ �DEc∈> �G ∙∙∙�̂ G 0;<;b, >gB�c�27�  ∏ ij�j��∈f!  �̂ �� 7�⁄
. 

Here again using 1 ≤ Q� ≤ Q1 ≤ ∞ then we get “(4)”. [4, 5, 

6, 8, 14, 15] 

4. Conclusion 

The properties given normed Lebesgue−Morrey space 

allow us to introduce some new normed spaces. In addition, 

we can give some properties of these type spaces and prove 

these properties. We can carry out the same procedures in the 

prove of the characterization of some spaces to show the 

inequality “3” and Fatou theorem. All of these concepts, of 

course, are underpinned by the connected properties of a 

function with many group variables. It is the author’s options 

that the concepts of given normed Lebesgue−Morrey space 

provide a vehicle for generalizing Lebesgue space to the 

normed spaces setting and ultimately suggest generalizations 

to the most important case of functions with many group 

variables on Lebesgue spaces. Present work by the author is 

devoted to generalizing to the concepts of Lebesgue spaces 

with many group variables to introduce if more refined 

results on the support and the property of this type space can 

be obtained. 
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